九色国产,午夜在线视频,新黄色网址,九九色综合,天天做夜夜做久久做狠狠,天天躁夜夜躁狠狠躁2021a,久久不卡一区二区三区

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
TensorFlow人工智能引擎入門教程之十 最強網(wǎng)絡(luò) RSNN深度殘差網(wǎng)絡(luò) 平均準(zhǔn)確率96

    

    在第六屆 ImageNet 圖像識別挑戰(zhàn)賽上,微軟研究院在多個類別的比賽中取得了第一名的成績。比賽結(jié)果顯示,微軟的技術(shù)水平遠遠超越了 Google、Intel、高通、騰訊以及一眾創(chuàng)業(yè)公司和科研實驗室。

這個叫做「圖像識別的深度殘差學(xué)習(xí)」的獲勝項目由微軟研究員何愷明、張祥雨、任少卿和孫劍共同完成。根據(jù)微軟博客顯示,有關(guān)該成果的細節(jié)將會在后續(xù)的論文中詳細介紹。

該技術(shù)的顯著意義主要在于其復(fù)雜性。

   http://arxiv.org/pdf/1512.03385v1.pdf

       

 因為傳統(tǒng)的 多層網(wǎng)絡(luò) 隨著層數(shù)增多,導(dǎo)致殘差 加大。所以為了防止這個問題,我們把多個網(wǎng)絡(luò)看成一個單元,單元計算后將上次的產(chǎn)生的殘差 記入 并記入下一次單元計算, 舉個例子, 小明 拿出100塊 買了一件1 元的  2 元的 6元的東西,但是 老板沒有1塊零錢,但是小明可能會繼續(xù)買,所以 買了1 2 6 元 后 當(dāng)做10元 我買了3次 ,那么實際上相當(dāng)于 每一次 老板還欠小明1塊,總共3塊,所以把這個3塊 加入到下一次計算的里面呢,比如小明 下次買了個2元 5元的東西 那么實際上 就是3 2 5 記入下一次 網(wǎng)絡(luò),總之 我的理解就是 把每一次計算后 得到的殘差 作為 作為一層網(wǎng)絡(luò) 來替代,也就是說 把殘差用網(wǎng)絡(luò)替代, 就好像 我們 用wx+b 替代y 一樣 ,實際的值 與 真實的值 有誤差 所以 如果我們把這個誤差 記入下一次wx+b來替代,最后是不是可以保證 中間每一層 wx+b 被抵押消除了 。大概是這樣的,這是我的理解,網(wǎng)上也沒有任何資料指出,個人看官方論文有感,如果有什么不對請指正。

看看官方samples的 關(guān)鍵代碼。他使用3 3 3 的卷積核,三次卷積之后 產(chǎn)生的殘差 記入 下一次 卷積,看net+conv  然后繼續(xù)wx+b   參數(shù)了殘差之后 繼續(xù)把新產(chǎn)生的殘差記入 下下次wx+b 

2015 MSRE大賽第一名  準(zhǔn)確率最高的深度學(xué)習(xí)網(wǎng)絡(luò),也是至今為止準(zhǔn)確率最高的網(wǎng)絡(luò) 幸運的是 在 好的訓(xùn)練集情況下 大概 結(jié)果 對大多數(shù)訓(xùn)練得到的準(zhǔn)確率96-99.9之間 。rsnn152 

         152的太長了 ,這里貼出一個rsnn50 準(zhǔn)確率 92-99

name: "ResNet-50"input: "data"input_dim: 1input_dim: 3input_dim: 224input_dim: 224layer {	bottom: "data"	top: "conv1"	name: "conv1"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 7		pad: 3		stride: 2	}}layer {	bottom: "conv1"	top: "conv1"	name: "bn_conv1"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "conv1"	top: "conv1"	name: "scale_conv1"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "conv1"	top: "conv1"	name: "conv1_relu"	type: "ReLU"}layer {	bottom: "conv1"	top: "pool1"	name: "pool1"	type: "Pooling"	pooling_param {		kernel_size: 3		stride: 2		pool: MAX	}}layer {	bottom: "pool1"	top: "res2a_branch1"	name: "res2a_branch1"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2a_branch1"	top: "res2a_branch1"	name: "bn2a_branch1"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2a_branch1"	top: "res2a_branch1"	name: "scale2a_branch1"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "pool1"	top: "res2a_branch2a"	name: "res2a_branch2a"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2a_branch2a"	top: "res2a_branch2a"	name: "bn2a_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2a_branch2a"	top: "res2a_branch2a"	name: "scale2a_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2a_branch2a"	top: "res2a_branch2a"	name: "res2a_branch2a_relu"	type: "ReLU"}layer {	bottom: "res2a_branch2a"	top: "res2a_branch2b"	name: "res2a_branch2b"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res2a_branch2b"	top: "res2a_branch2b"	name: "bn2a_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2a_branch2b"	top: "res2a_branch2b"	name: "scale2a_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2a_branch2b"	top: "res2a_branch2b"	name: "res2a_branch2b_relu"	type: "ReLU"}layer {	bottom: "res2a_branch2b"	top: "res2a_branch2c"	name: "res2a_branch2c"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2a_branch2c"	top: "res2a_branch2c"	name: "bn2a_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2a_branch2c"	top: "res2a_branch2c"	name: "scale2a_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2a_branch1"	bottom: "res2a_branch2c"	top: "res2a"	name: "res2a"	type: "Eltwise"}layer {	bottom: "res2a"	top: "res2a"	name: "res2a_relu"	type: "ReLU"}layer {	bottom: "res2a"	top: "res2b_branch2a"	name: "res2b_branch2a"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2b_branch2a"	top: "res2b_branch2a"	name: "bn2b_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2b_branch2a"	top: "res2b_branch2a"	name: "scale2b_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2b_branch2a"	top: "res2b_branch2a"	name: "res2b_branch2a_relu"	type: "ReLU"}layer {	bottom: "res2b_branch2a"	top: "res2b_branch2b"	name: "res2b_branch2b"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res2b_branch2b"	top: "res2b_branch2b"	name: "bn2b_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2b_branch2b"	top: "res2b_branch2b"	name: "scale2b_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2b_branch2b"	top: "res2b_branch2b"	name: "res2b_branch2b_relu"	type: "ReLU"}layer {	bottom: "res2b_branch2b"	top: "res2b_branch2c"	name: "res2b_branch2c"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2b_branch2c"	top: "res2b_branch2c"	name: "bn2b_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2b_branch2c"	top: "res2b_branch2c"	name: "scale2b_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2a"	bottom: "res2b_branch2c"	top: "res2b"	name: "res2b"	type: "Eltwise"}layer {	bottom: "res2b"	top: "res2b"	name: "res2b_relu"	type: "ReLU"}layer {	bottom: "res2b"	top: "res2c_branch2a"	name: "res2c_branch2a"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2c_branch2a"	top: "res2c_branch2a"	name: "bn2c_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2c_branch2a"	top: "res2c_branch2a"	name: "scale2c_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2c_branch2a"	top: "res2c_branch2a"	name: "res2c_branch2a_relu"	type: "ReLU"}layer {	bottom: "res2c_branch2a"	top: "res2c_branch2b"	name: "res2c_branch2b"	type: "Convolution"	convolution_param {		num_output: 64		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res2c_branch2b"	top: "res2c_branch2b"	name: "bn2c_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2c_branch2b"	top: "res2c_branch2b"	name: "scale2c_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2c_branch2b"	top: "res2c_branch2b"	name: "res2c_branch2b_relu"	type: "ReLU"}layer {	bottom: "res2c_branch2b"	top: "res2c_branch2c"	name: "res2c_branch2c"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res2c_branch2c"	top: "res2c_branch2c"	name: "bn2c_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res2c_branch2c"	top: "res2c_branch2c"	name: "scale2c_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2b"	bottom: "res2c_branch2c"	top: "res2c"	name: "res2c"	type: "Eltwise"}layer {	bottom: "res2c"	top: "res2c"	name: "res2c_relu"	type: "ReLU"}layer {	bottom: "res2c"	top: "res3a_branch1"	name: "res3a_branch1"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res3a_branch1"	top: "res3a_branch1"	name: "bn3a_branch1"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3a_branch1"	top: "res3a_branch1"	name: "scale3a_branch1"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res2c"	top: "res3a_branch2a"	name: "res3a_branch2a"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res3a_branch2a"	top: "res3a_branch2a"	name: "bn3a_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3a_branch2a"	top: "res3a_branch2a"	name: "scale3a_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3a_branch2a"	top: "res3a_branch2a"	name: "res3a_branch2a_relu"	type: "ReLU"}layer {	bottom: "res3a_branch2a"	top: "res3a_branch2b"	name: "res3a_branch2b"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res3a_branch2b"	top: "res3a_branch2b"	name: "bn3a_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3a_branch2b"	top: "res3a_branch2b"	name: "scale3a_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3a_branch2b"	top: "res3a_branch2b"	name: "res3a_branch2b_relu"	type: "ReLU"}layer {	bottom: "res3a_branch2b"	top: "res3a_branch2c"	name: "res3a_branch2c"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3a_branch2c"	top: "res3a_branch2c"	name: "bn3a_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3a_branch2c"	top: "res3a_branch2c"	name: "scale3a_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3a_branch1"	bottom: "res3a_branch2c"	top: "res3a"	name: "res3a"	type: "Eltwise"}layer {	bottom: "res3a"	top: "res3a"	name: "res3a_relu"	type: "ReLU"}layer {	bottom: "res3a"	top: "res3b_branch2a"	name: "res3b_branch2a"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3b_branch2a"	top: "res3b_branch2a"	name: "bn3b_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3b_branch2a"	top: "res3b_branch2a"	name: "scale3b_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3b_branch2a"	top: "res3b_branch2a"	name: "res3b_branch2a_relu"	type: "ReLU"}layer {	bottom: "res3b_branch2a"	top: "res3b_branch2b"	name: "res3b_branch2b"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res3b_branch2b"	top: "res3b_branch2b"	name: "bn3b_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3b_branch2b"	top: "res3b_branch2b"	name: "scale3b_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3b_branch2b"	top: "res3b_branch2b"	name: "res3b_branch2b_relu"	type: "ReLU"}layer {	bottom: "res3b_branch2b"	top: "res3b_branch2c"	name: "res3b_branch2c"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3b_branch2c"	top: "res3b_branch2c"	name: "bn3b_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3b_branch2c"	top: "res3b_branch2c"	name: "scale3b_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3a"	bottom: "res3b_branch2c"	top: "res3b"	name: "res3b"	type: "Eltwise"}layer {	bottom: "res3b"	top: "res3b"	name: "res3b_relu"	type: "ReLU"}layer {	bottom: "res3b"	top: "res3c_branch2a"	name: "res3c_branch2a"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3c_branch2a"	top: "res3c_branch2a"	name: "bn3c_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3c_branch2a"	top: "res3c_branch2a"	name: "scale3c_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3c_branch2a"	top: "res3c_branch2a"	name: "res3c_branch2a_relu"	type: "ReLU"}layer {	bottom: "res3c_branch2a"	top: "res3c_branch2b"	name: "res3c_branch2b"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res3c_branch2b"	top: "res3c_branch2b"	name: "bn3c_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3c_branch2b"	top: "res3c_branch2b"	name: "scale3c_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3c_branch2b"	top: "res3c_branch2b"	name: "res3c_branch2b_relu"	type: "ReLU"}layer {	bottom: "res3c_branch2b"	top: "res3c_branch2c"	name: "res3c_branch2c"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3c_branch2c"	top: "res3c_branch2c"	name: "bn3c_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3c_branch2c"	top: "res3c_branch2c"	name: "scale3c_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3b"	bottom: "res3c_branch2c"	top: "res3c"	name: "res3c"	type: "Eltwise"}layer {	bottom: "res3c"	top: "res3c"	name: "res3c_relu"	type: "ReLU"}layer {	bottom: "res3c"	top: "res3d_branch2a"	name: "res3d_branch2a"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3d_branch2a"	top: "res3d_branch2a"	name: "bn3d_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3d_branch2a"	top: "res3d_branch2a"	name: "scale3d_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3d_branch2a"	top: "res3d_branch2a"	name: "res3d_branch2a_relu"	type: "ReLU"}layer {	bottom: "res3d_branch2a"	top: "res3d_branch2b"	name: "res3d_branch2b"	type: "Convolution"	convolution_param {		num_output: 128		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res3d_branch2b"	top: "res3d_branch2b"	name: "bn3d_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3d_branch2b"	top: "res3d_branch2b"	name: "scale3d_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3d_branch2b"	top: "res3d_branch2b"	name: "res3d_branch2b_relu"	type: "ReLU"}layer {	bottom: "res3d_branch2b"	top: "res3d_branch2c"	name: "res3d_branch2c"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res3d_branch2c"	top: "res3d_branch2c"	name: "bn3d_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res3d_branch2c"	top: "res3d_branch2c"	name: "scale3d_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3c"	bottom: "res3d_branch2c"	top: "res3d"	name: "res3d"	type: "Eltwise"}layer {	bottom: "res3d"	top: "res3d"	name: "res3d_relu"	type: "ReLU"}layer {	bottom: "res3d"	top: "res4a_branch1"	name: "res4a_branch1"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res4a_branch1"	top: "res4a_branch1"	name: "bn4a_branch1"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4a_branch1"	top: "res4a_branch1"	name: "scale4a_branch1"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res3d"	top: "res4a_branch2a"	name: "res4a_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res4a_branch2a"	top: "res4a_branch2a"	name: "bn4a_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4a_branch2a"	top: "res4a_branch2a"	name: "scale4a_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4a_branch2a"	top: "res4a_branch2a"	name: "res4a_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4a_branch2a"	top: "res4a_branch2b"	name: "res4a_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4a_branch2b"	top: "res4a_branch2b"	name: "bn4a_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4a_branch2b"	top: "res4a_branch2b"	name: "scale4a_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4a_branch2b"	top: "res4a_branch2b"	name: "res4a_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4a_branch2b"	top: "res4a_branch2c"	name: "res4a_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4a_branch2c"	top: "res4a_branch2c"	name: "bn4a_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4a_branch2c"	top: "res4a_branch2c"	name: "scale4a_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4a_branch1"	bottom: "res4a_branch2c"	top: "res4a"	name: "res4a"	type: "Eltwise"}layer {	bottom: "res4a"	top: "res4a"	name: "res4a_relu"	type: "ReLU"}layer {	bottom: "res4a"	top: "res4b_branch2a"	name: "res4b_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4b_branch2a"	top: "res4b_branch2a"	name: "bn4b_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4b_branch2a"	top: "res4b_branch2a"	name: "scale4b_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4b_branch2a"	top: "res4b_branch2a"	name: "res4b_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4b_branch2a"	top: "res4b_branch2b"	name: "res4b_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4b_branch2b"	top: "res4b_branch2b"	name: "bn4b_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4b_branch2b"	top: "res4b_branch2b"	name: "scale4b_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4b_branch2b"	top: "res4b_branch2b"	name: "res4b_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4b_branch2b"	top: "res4b_branch2c"	name: "res4b_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4b_branch2c"	top: "res4b_branch2c"	name: "bn4b_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4b_branch2c"	top: "res4b_branch2c"	name: "scale4b_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4a"	bottom: "res4b_branch2c"	top: "res4b"	name: "res4b"	type: "Eltwise"}layer {	bottom: "res4b"	top: "res4b"	name: "res4b_relu"	type: "ReLU"}layer {	bottom: "res4b"	top: "res4c_branch2a"	name: "res4c_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4c_branch2a"	top: "res4c_branch2a"	name: "bn4c_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4c_branch2a"	top: "res4c_branch2a"	name: "scale4c_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4c_branch2a"	top: "res4c_branch2a"	name: "res4c_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4c_branch2a"	top: "res4c_branch2b"	name: "res4c_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4c_branch2b"	top: "res4c_branch2b"	name: "bn4c_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4c_branch2b"	top: "res4c_branch2b"	name: "scale4c_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4c_branch2b"	top: "res4c_branch2b"	name: "res4c_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4c_branch2b"	top: "res4c_branch2c"	name: "res4c_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4c_branch2c"	top: "res4c_branch2c"	name: "bn4c_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4c_branch2c"	top: "res4c_branch2c"	name: "scale4c_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4b"	bottom: "res4c_branch2c"	top: "res4c"	name: "res4c"	type: "Eltwise"}layer {	bottom: "res4c"	top: "res4c"	name: "res4c_relu"	type: "ReLU"}layer {	bottom: "res4c"	top: "res4d_branch2a"	name: "res4d_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4d_branch2a"	top: "res4d_branch2a"	name: "bn4d_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4d_branch2a"	top: "res4d_branch2a"	name: "scale4d_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4d_branch2a"	top: "res4d_branch2a"	name: "res4d_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4d_branch2a"	top: "res4d_branch2b"	name: "res4d_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4d_branch2b"	top: "res4d_branch2b"	name: "bn4d_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4d_branch2b"	top: "res4d_branch2b"	name: "scale4d_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4d_branch2b"	top: "res4d_branch2b"	name: "res4d_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4d_branch2b"	top: "res4d_branch2c"	name: "res4d_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4d_branch2c"	top: "res4d_branch2c"	name: "bn4d_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4d_branch2c"	top: "res4d_branch2c"	name: "scale4d_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4c"	bottom: "res4d_branch2c"	top: "res4d"	name: "res4d"	type: "Eltwise"}layer {	bottom: "res4d"	top: "res4d"	name: "res4d_relu"	type: "ReLU"}layer {	bottom: "res4d"	top: "res4e_branch2a"	name: "res4e_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4e_branch2a"	top: "res4e_branch2a"	name: "bn4e_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4e_branch2a"	top: "res4e_branch2a"	name: "scale4e_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4e_branch2a"	top: "res4e_branch2a"	name: "res4e_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4e_branch2a"	top: "res4e_branch2b"	name: "res4e_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4e_branch2b"	top: "res4e_branch2b"	name: "bn4e_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4e_branch2b"	top: "res4e_branch2b"	name: "scale4e_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4e_branch2b"	top: "res4e_branch2b"	name: "res4e_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4e_branch2b"	top: "res4e_branch2c"	name: "res4e_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4e_branch2c"	top: "res4e_branch2c"	name: "bn4e_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4e_branch2c"	top: "res4e_branch2c"	name: "scale4e_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4d"	bottom: "res4e_branch2c"	top: "res4e"	name: "res4e"	type: "Eltwise"}layer {	bottom: "res4e"	top: "res4e"	name: "res4e_relu"	type: "ReLU"}layer {	bottom: "res4e"	top: "res4f_branch2a"	name: "res4f_branch2a"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4f_branch2a"	top: "res4f_branch2a"	name: "bn4f_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4f_branch2a"	top: "res4f_branch2a"	name: "scale4f_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4f_branch2a"	top: "res4f_branch2a"	name: "res4f_branch2a_relu"	type: "ReLU"}layer {	bottom: "res4f_branch2a"	top: "res4f_branch2b"	name: "res4f_branch2b"	type: "Convolution"	convolution_param {		num_output: 256		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res4f_branch2b"	top: "res4f_branch2b"	name: "bn4f_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4f_branch2b"	top: "res4f_branch2b"	name: "scale4f_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4f_branch2b"	top: "res4f_branch2b"	name: "res4f_branch2b_relu"	type: "ReLU"}layer {	bottom: "res4f_branch2b"	top: "res4f_branch2c"	name: "res4f_branch2c"	type: "Convolution"	convolution_param {		num_output: 1024		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res4f_branch2c"	top: "res4f_branch2c"	name: "bn4f_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res4f_branch2c"	top: "res4f_branch2c"	name: "scale4f_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4e"	bottom: "res4f_branch2c"	top: "res4f"	name: "res4f"	type: "Eltwise"}layer {	bottom: "res4f"	top: "res4f"	name: "res4f_relu"	type: "ReLU"}layer {	bottom: "res4f"	top: "res5a_branch1"	name: "res5a_branch1"	type: "Convolution"	convolution_param {		num_output: 2048		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res5a_branch1"	top: "res5a_branch1"	name: "bn5a_branch1"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5a_branch1"	top: "res5a_branch1"	name: "scale5a_branch1"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res4f"	top: "res5a_branch2a"	name: "res5a_branch2a"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 2		bias_term: false	}}layer {	bottom: "res5a_branch2a"	top: "res5a_branch2a"	name: "bn5a_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5a_branch2a"	top: "res5a_branch2a"	name: "scale5a_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5a_branch2a"	top: "res5a_branch2a"	name: "res5a_branch2a_relu"	type: "ReLU"}layer {	bottom: "res5a_branch2a"	top: "res5a_branch2b"	name: "res5a_branch2b"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res5a_branch2b"	top: "res5a_branch2b"	name: "bn5a_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5a_branch2b"	top: "res5a_branch2b"	name: "scale5a_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5a_branch2b"	top: "res5a_branch2b"	name: "res5a_branch2b_relu"	type: "ReLU"}layer {	bottom: "res5a_branch2b"	top: "res5a_branch2c"	name: "res5a_branch2c"	type: "Convolution"	convolution_param {		num_output: 2048		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res5a_branch2c"	top: "res5a_branch2c"	name: "bn5a_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5a_branch2c"	top: "res5a_branch2c"	name: "scale5a_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5a_branch1"	bottom: "res5a_branch2c"	top: "res5a"	name: "res5a"	type: "Eltwise"}layer {	bottom: "res5a"	top: "res5a"	name: "res5a_relu"	type: "ReLU"}layer {	bottom: "res5a"	top: "res5b_branch2a"	name: "res5b_branch2a"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res5b_branch2a"	top: "res5b_branch2a"	name: "bn5b_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5b_branch2a"	top: "res5b_branch2a"	name: "scale5b_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5b_branch2a"	top: "res5b_branch2a"	name: "res5b_branch2a_relu"	type: "ReLU"}layer {	bottom: "res5b_branch2a"	top: "res5b_branch2b"	name: "res5b_branch2b"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res5b_branch2b"	top: "res5b_branch2b"	name: "bn5b_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5b_branch2b"	top: "res5b_branch2b"	name: "scale5b_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5b_branch2b"	top: "res5b_branch2b"	name: "res5b_branch2b_relu"	type: "ReLU"}layer {	bottom: "res5b_branch2b"	top: "res5b_branch2c"	name: "res5b_branch2c"	type: "Convolution"	convolution_param {		num_output: 2048		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res5b_branch2c"	top: "res5b_branch2c"	name: "bn5b_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5b_branch2c"	top: "res5b_branch2c"	name: "scale5b_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5a"	bottom: "res5b_branch2c"	top: "res5b"	name: "res5b"	type: "Eltwise"}layer {	bottom: "res5b"	top: "res5b"	name: "res5b_relu"	type: "ReLU"}layer {	bottom: "res5b"	top: "res5c_branch2a"	name: "res5c_branch2a"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res5c_branch2a"	top: "res5c_branch2a"	name: "bn5c_branch2a"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5c_branch2a"	top: "res5c_branch2a"	name: "scale5c_branch2a"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5c_branch2a"	top: "res5c_branch2a"	name: "res5c_branch2a_relu"	type: "ReLU"}layer {	bottom: "res5c_branch2a"	top: "res5c_branch2b"	name: "res5c_branch2b"	type: "Convolution"	convolution_param {		num_output: 512		kernel_size: 3		pad: 1		stride: 1		bias_term: false	}}layer {	bottom: "res5c_branch2b"	top: "res5c_branch2b"	name: "bn5c_branch2b"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5c_branch2b"	top: "res5c_branch2b"	name: "scale5c_branch2b"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5c_branch2b"	top: "res5c_branch2b"	name: "res5c_branch2b_relu"	type: "ReLU"}layer {	bottom: "res5c_branch2b"	top: "res5c_branch2c"	name: "res5c_branch2c"	type: "Convolution"	convolution_param {		num_output: 2048		kernel_size: 1		pad: 0		stride: 1		bias_term: false	}}layer {	bottom: "res5c_branch2c"	top: "res5c_branch2c"	name: "bn5c_branch2c"	type: "BatchNorm"	batch_norm_param {		use_global_stats: true	}}layer {	bottom: "res5c_branch2c"	top: "res5c_branch2c"	name: "scale5c_branch2c"	type: "Scale"	scale_param {		bias_term: true	}}layer {	bottom: "res5b"	bottom: "res5c_branch2c"	top: "res5c"	name: "res5c"	type: "Eltwise"}layer {	bottom: "res5c"	top: "res5c"	name: "res5c_relu"	type: "ReLU"}layer {	bottom: "res5c"	top: "pool5"	name: "pool5"	type: "Pooling"	pooling_param {		kernel_size: 7		stride: 1		pool: AVE	}}layer {	bottom: "pool5"	top: "fc1000"	name: "fc1000"	type: "InnerProduct"	inner_product_param {		num_output: 1000	}}layer {	bottom: "fc1000"	top: "prob"	name: "prob"	type: "Softmax"}

下面貼出一個非常簡單的10層的殘差網(wǎng)絡(luò)   ,真實環(huán)境下 請用res50 res152 

      

import tensorflow as tffrom collections import namedtuplefrom math import sqrtimport input_datadef conv2d(x, n_filters,           k_h=5, k_w=5,           stride_h=2, stride_w=2,           stddev=0.02,           activation=lambda x: x,           bias=True,           padding='SAME',           name="Conv2D"):      with tf.variable_scope(name):        w = tf.get_variable(            'w', [k_h, k_w, x.get_shape()[-1], n_filters],            initializer=tf.truncated_normal_initializer(stddev=stddev))        conv = tf.nn.conv2d(            x, w, strides=[1, stride_h, stride_w, 1], padding=padding)        if bias:            b = tf.get_variable(                'b', [n_filters],                initializer=tf.truncated_normal_initializer(stddev=stddev))            conv = conv + b        return activation(conv)def linear(x, n_units, scope=None, stddev=0.02,           activation=lambda x: x):        shape = x.get_shape().as_list()    with tf.variable_scope(scope or "Linear"):        matrix = tf.get_variable("Matrix", [shape[1], n_units], tf.float32,                                 tf.random_normal_initializer(stddev=stddev))        return activation(tf.matmul(x, matrix))# %%def residual_network(x, n_outputs,                     activation=tf.nn.relu):      # %%    LayerBlock = namedtuple(        'LayerBlock', ['num_repeats', 'num_filters', 'bottleneck_size'])    blocks = [LayerBlock(3, 128, 32),              LayerBlock(3, 256, 64),              LayerBlock(3, 512, 128),              LayerBlock(3, 1024, 256)]    # %%    input_shape = x.get_shape().as_list()    if len(input_shape) == 2:        ndim = int(sqrt(input_shape[1]))        if ndim * ndim != input_shape[1]:            raise ValueError('input_shape should be square')        x = tf.reshape(x, [-1, ndim, ndim, 1])    # %%    # First convolution expands to 64 channels and downsamples    net = conv2d(x, 64, k_h=7, k_w=7,                 name='conv1',                 activation=activation)    # %%    # Max pool and downsampling    net = tf.nn.max_pool(        net, [1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')    # %%    # Setup first chain of resnets    net = conv2d(net, blocks[0].num_filters, k_h=1, k_w=1,                 stride_h=1, stride_w=1, padding='VALID', name='conv2')    # %%    # Loop through all res blocks    for block_i, block in enumerate(blocks):        for repeat_i in range(block.num_repeats):            name = 'block_%d/repeat_%d' % (block_i, repeat_i)            conv = conv2d(net, block.bottleneck_size, k_h=1, k_w=1,                          padding='VALID', stride_h=1, stride_w=1,                          activation=activation,                          name=name + '/conv_in')            conv = conv2d(conv, block.bottleneck_size, k_h=3, k_w=3,                          padding='SAME', stride_h=1, stride_w=1,                          activation=activation,                          name=name + '/conv_bottleneck')            conv = conv2d(conv, block.num_filters, k_h=1, k_w=1,                          padding='VALID', stride_h=1, stride_w=1,                          activation=activation,                          name=name + '/conv_out')            net = conv + net        try:            # upscale to the next block size            next_block = blocks[block_i + 1]            net = conv2d(net, next_block.num_filters, k_h=1, k_w=1,                         padding='SAME', stride_h=1, stride_w=1, bias=False,                         name='block_%d/conv_upscale' % block_i)        except IndexError:            pass    # %%    net = tf.nn.avg_pool(net,                         ksize=[1, net.get_shape().as_list()[1],                                net.get_shape().as_list()[2], 1],                         strides=[1, 1, 1, 1], padding='VALID')    net = tf.reshape(        net,        [-1, net.get_shape().as_list()[1] *         net.get_shape().as_list()[2] *         net.get_shape().as_list()[3]])    net = linear(net, n_outputs, activation=tf.nn.softmax)    # %%    return netdef rsnn():    """Test the resnet on MNIST."""        mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)    x = tf.placeholder(tf.float32, [None, 784])    y = tf.placeholder(tf.float32, [None, 10])    y_pred = residual_network(x, 10)    # %% Define loss/eval/training functions    cross_entropy = -tf.reduce_sum(y * tf.log(y_pred))    optimizer = tf.train.AdamOptimizer().minimize(cross_entropy)    # %% Monitor accuracy    correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y, 1))    accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))    # %% We now create a new session to actually perform the initialization the    # variables:    sess = tf.Session()    sess.run(tf.initialize_all_variables())    # %% We'll train in minibatches and report accuracy:    batch_size = 50    n_epochs = 5    for epoch_i in range(n_epochs):        # Training        train_accuracy = 0        for batch_i in range(mnist.train.num_examples // batch_size):            batch_xs, batch_ys = mnist.train.next_batch(batch_size)            train_accuracy += sess.run([optimizer, accuracy], feed_dict={                x: batch_xs, y: batch_ys})[1]        train_accuracy /= (mnist.train.num_examples // batch_size)        # Validation        valid_accuracy = 0        for batch_i in range(mnist.validation.num_examples // batch_size):            batch_xs, batch_ys = mnist.validation.next_batch(batch_size)            valid_accuracy += sess.run(accuracy,                                       feed_dict={                                           x: batch_xs,                                           y: batch_ys                                       })        valid_accuracy /= (mnist.validation.num_examples // batch_size)        print('epoch:', epoch_i, ', train:',              train_accuracy, ', valid:', valid_accuracy)if __name__ == '__main__':    rsnn()

下面 是迭代一次的準(zhǔn)確率

這里我就不等他迭代完成了。。。。







本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
tensorflow學(xué)習(xí)筆記(5)卷積神經(jīng)網(wǎng)絡(luò)(CNN)
【深度學(xué)習(xí)系列】用PaddlePaddle和Tensorflow實現(xiàn)經(jīng)典CNN網(wǎng)絡(luò)GoogLeNet...
「TensorFlow2.0」如何搭建網(wǎng)絡(luò)模型?
手寫數(shù)字識別:卷積神經(jīng)網(wǎng)絡(luò)CNN原理詳解
干貨|(DL~3)deep learning中一些層的介紹
(RegionProposal Network)RPN網(wǎng)絡(luò)結(jié)構(gòu)及詳解
更多類似文章 >>
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服