Python的卓越靈活性和易用性使其成為最受歡迎的編程語(yǔ)言之一,尤其是對(duì)于數(shù)據(jù)處理和機(jī)器學(xué)習(xí)方面來(lái)說(shuō),其強(qiáng)大的數(shù)據(jù)處理庫(kù)和算法庫(kù)使得python成為入門數(shù)據(jù)科學(xué)的首選語(yǔ)言。在日常使用中,CSV,JSON和XML三種數(shù)據(jù)格式占據(jù)主導(dǎo)地位。下面我將針對(duì)三種數(shù)據(jù)格式來(lái)分享其快速處理的方法。
CSV數(shù)據(jù)
CSV是存儲(chǔ)數(shù)據(jù)的最常用方法。在Kaggle比賽的大部分?jǐn)?shù)據(jù)都是以這種方式存儲(chǔ)的。我們可以使用內(nèi)置的Python csv庫(kù)來(lái)讀取和寫入CSV。通常,我們會(huì)將數(shù)據(jù)讀入列表列表。
看看下面的代碼。當(dāng)我們運(yùn)行csv.reader()所有CSV數(shù)據(jù)變得可訪問(wèn)時(shí)。該csvreader.next()函數(shù)從CSV中讀取一行; 每次調(diào)用它,它都會(huì)移動(dòng)到下一行。我們也可以使用for循環(huán)遍歷csv的每一行for row in csvreader 。確保每行中的列數(shù)相同,否則,在處理列表列表時(shí),最終可能會(huì)遇到一些錯(cuò)誤。
import csv
filename = 'my_data.csv'
fields = []
rows = []
# Reading csv file
with open(filename, 'r') as csvfile:
# Creating a csv reader object
csvreader = csv.reader(csvfile)
# Extracting field names in the first row
fields = csvreader.next()
# Extracting each data row one by one
for row in csvreader:
rows.append(row)
# Printing out the first 5 rows
for row in rows[:5]:
print(row)
在Python中寫入CSV同樣容易。在單個(gè)列表中設(shè)置字段名稱,并在列表列表中設(shè)置數(shù)據(jù)。這次我們將創(chuàng)建一個(gè)writer()對(duì)象并使用它將我們的數(shù)據(jù)寫入文件,與讀取時(shí)的方法基本一樣。
import csv
# Field names
fields = ['Name', 'Goals', 'Assists', 'Shots']
# Rows of data in the csv file
rows = [ ['Emily', '12', '18', '112'],
['Katie', '8', '24', '96'],
['John', '16', '9', '101'],
['Mike', '3', '14', '82']]
filename = 'soccer.csv'
# Writing to csv file
with open(filename, 'w+') as csvfile:
# Creating a csv writer object
csvwriter = csv.writer(csvfile)
# Writing the fields
csvwriter.writerow(fields)
# Writing the data rows
csvwriter.writerows(rows)
我們可以使用Pandas將CSV轉(zhuǎn)換為快速單行的字典列表。將數(shù)據(jù)格式化為字典列表后,我們將使用該dicttoxml庫(kù)將其轉(zhuǎn)換為XML格式。我們還將其保存為JSON文件!
import pandas as pd
from dicttoxml import dicttoxml
import json
# Building our dataframe
data = {'Name': ['Emily', 'Katie', 'John', 'Mike'],
'Goals': [12, 8, 16, 3],
'Assists': [18, 24, 9, 14],
'Shots': [112, 96, 101, 82]
}
df = pd.DataFrame(data, columns=data.keys())
# Converting the dataframe to a dictionary
# Then save it to file
data_dict = df.to_dict(orient='records')
with open('output.json', 'w+') as f:
json.dump(data_dict, f, indent=4)
# Converting the dataframe to XML
# Then save it to file
xml_data = dicttoxml(data_dict).decode()
with open('output.xml', 'w+') as f:
f.write(xml_data)
JSON數(shù)據(jù)
JSON提供了一種簡(jiǎn)潔且易于閱讀的格式,它保持了字典式結(jié)構(gòu)。就像CSV一樣,Python有一個(gè)內(nèi)置的JSON模塊,使閱讀和寫作變得非常簡(jiǎn)單!我們以字典的形式讀取CSV時(shí),然后我們將該字典格式數(shù)據(jù)寫入文件。
import json
import pandas as pd
# Read the data from file
# We now have a Python dictionary
with open('data.json') as f:
data_listofdict = json.load(f)
# We can do the same thing with pandas
data_df = pd.read_json('data.json', orient='records')
# We can write a dictionary to JSON like so
# Use 'indent' and 'sort_keys' to make the JSON
# file look nice
with open('new_data.json', 'w+') as json_file:
json.dump(data_listofdict, json_file, indent=4, sort_keys=True)
# And again the same thing with pandas
export = data_df.to_json('new_data.json', orient='records')
正如我們之前看到的,一旦我們獲得了數(shù)據(jù),就可以通過(guò)pandas或使用內(nèi)置的Python CSV模塊輕松轉(zhuǎn)換為CSV。轉(zhuǎn)換為XML時(shí),可以使用dicttoxml庫(kù)。具體代碼如下:
import json
import pandas as pd
import csv
# Read the data from file
# We now have a Python dictionary
with open('data.json') as f:
data_listofdict = json.load(f)
# Writing a list of dicts to CSV
keys = data_listofdict[0].keys()
with open('saved_data.csv', 'wb') as output_file:
dict_writer = csv.DictWriter(output_file, keys)
dict_writer.writeheader()
dict_writer.writerows(data_listofdict)
XML數(shù)據(jù)
XML與CSV和JSON有點(diǎn)不同。CSV和JSON由于其既簡(jiǎn)單又快速,可以方便人們進(jìn)行閱讀,編寫和解釋。而XML占用更多的內(nèi)存空間,傳送和儲(chǔ)存需要更大的帶寬,更多存儲(chǔ)空間和更久的運(yùn)行時(shí)間。但是XML也有一些基于JSON和CSV的額外功能:您可以使用命名空間來(lái)構(gòu)建和共享結(jié)構(gòu)標(biāo)準(zhǔn),更好地傳承,以及使用XML、DTD等數(shù)據(jù)表示的行業(yè)標(biāo)準(zhǔn)化方法。
要讀入XML數(shù)據(jù),我們將使用Python的內(nèi)置XML模塊和子模ElementTree。我們可以使用xmltodict庫(kù)將ElementTree對(duì)象轉(zhuǎn)換為字典。一旦我們有了字典,我們就可以轉(zhuǎn)換為CSV,JSON或Pandas Dataframe!具體代碼如下:
import xml.etree.ElementTree as ET
import xmltodict
import json
tree = ET.parse('output.xml')
xml_data = tree.getroot()
xmlstr = ET.tostring(xml_data, encoding='utf8', method='xml')
data_dict = dict(xmltodict.parse(xmlstr))
print(data_dict)
with open('new_data_2.json', 'w+') as json_file:
json.dump(data_dict, json_file, indent=4, sort_keys=True)
原文參考
https://towardsdatascience.com/the-easy-way-to-work-with-csv-json-and-xml-in-python-5056f9325ca9
聯(lián)系客服