從人工智能的歷史來看,每一類人工智能的應用均要經(jīng)過實驗室階段、試點階段、推廣階段和普及階段。盡管國內(nèi)企業(yè)在人工智能基礎科研方面與美日等國家有巨大差距,但人工智能相關的企業(yè)大都從已經(jīng)進入試點階段的技術或應用切入,并在視覺、語音識別等技術領域處于國際領先水平。根據(jù)2015年艾瑞咨詢的統(tǒng)計,中國人工智能領域已有近百家創(chuàng)業(yè)公司,約65家獲得投資,共計29.1億元人民幣,其中曠視科技、優(yōu)必選、云之聲、SenseTime四家公司登上艾瑞獨角獸榜單。
以史為鑒:人工智能發(fā)展路徑展望—技術領域、應用領域雙輪驅(qū)動
如果將人工智能的產(chǎn)業(yè)鏈分為基礎設施層、技術層和應用層,通過回顧和分析人工智能過去的發(fā)展路徑,我們認為人工智能的發(fā)展往往是靠應用層的需求或是基礎設施層的進步推動的,主要存在以下兩種路徑——需求創(chuàng)造供給,或者供給創(chuàng)造需求。
路徑一:應用層的需求推動人們對于AI技術層(算法等)的開發(fā),技術層的進步使得基礎設施的利用效率不斷提高。不過,當技術層發(fā)展到一定階段時,基礎設施的利用效率提升空間很小,此時需要基礎設施層的不斷升級來支持,一旦基礎設施層對于AI的支持跟不上,或是應用層的需求飽和,AI的前進步伐就放緩,甚至進入“寒冬”(如80年代的專家系統(tǒng))。
路徑二:基礎設施層的迅速進步使得技術層可以實現(xiàn)的拓展越來越多(比如基于大數(shù)據(jù)的海量運算的語音識別、人臉識別、搜索等),而技術層的多元化使得人們發(fā)現(xiàn)有大量應用層的創(chuàng)新可以推進,解決當前各行業(yè)的痛點,甚至創(chuàng)造和培育新的需求。
當前中國還處于行業(yè)應用層起步到快速發(fā)展的階段,應用層的投資機會和投入回報率遠高于技術層和基礎設施層,當這個階段出現(xiàn)泡沫時,投資機會可能更多地出現(xiàn)在技術層,當技術層停滯并出現(xiàn)泡沫時,投資機會可能更多在基礎設施層。根據(jù)從目前人工智能的發(fā)展情況來看,技術領域的運用已經(jīng)進入加速期,預計5~10年就能陸續(xù)成熟。在基礎設施領域,量子計算等新型芯片模式短期內(nèi)還很難實現(xiàn),不過基于云端架構(gòu)的并行計算模式已經(jīng)逐步進入成熟期,短期內(nèi)基礎設施還不會對人工智能的發(fā)展形成障礙。從當前的情況來看,預計應用領域和技術領域?qū)⒊蔀槿斯ぶ悄苓M一步發(fā)展的兩個核心驅(qū)動力。
WHAT:AI是跨行業(yè)、跨學科的綜合技術
AI橫跨4大核心技術,涵蓋13個細分領域
人工智能是一個跨學科、跨行業(yè)的綜合性學科。人工智能最初的核心是實現(xiàn)“智能”這一概念,即機器可以像人一樣思考,而不只是被動式的執(zhí)行人發(fā)出的每一步指令。人們研究出許多算法將這一想法得以實現(xiàn),計算機開始可以自己學習,之后慢慢發(fā)展成機器算法這個研究方向。而后,由于人們對于將智能分別運用到圖像、語言、聲音處理和與硬件之間的互動方面的需求增加,自然語言處理、圖像識別和人際交互這三個領域又各自發(fā)展成獨立的研究方向,他們借用機器學習中的一些算法并更多地加入有自身特性的技術。因此,人工智能現(xiàn)在演化成了機器學習、自然語言處理、圖像識別以及人機交互這四大模塊。
機器學習技術:指計算機通過對大量已有數(shù)據(jù)的處理分析和學習,從而擁有預測判斷和做出最佳決策的能力。這項技術與計算機科學、統(tǒng)計學、數(shù)學優(yōu)化算法等都有著密不可分的關系。其代表算法有深入學習、人工神經(jīng)網(wǎng)絡、決策樹、增強算法等。
自然語言處理技術:指讓計算機可以理解人類的語言,包括將人類語言轉(zhuǎn)化為計算機程序可以處理的形式及將計算機數(shù)據(jù)轉(zhuǎn)化為人類自然語言兩種形式。這里指的語言可以是聲音也可以是文字。這項技術的主要內(nèi)容包括信息檢索、信息抽取、詞性標注、句法分析、多語處理、語音識別等。
圖像處理技術:指讓計算機擁有人類的視覺功能,可以獲得、處理并分析和理解圖片或多維度數(shù)據(jù)。這項技術的主要內(nèi)容包括圖像獲得、圖像過濾和調(diào)整、特征提取等。
人機交互技術:指計算機系統(tǒng)和用戶可以通過人機交互界面進行交流。這項技術包括的主要內(nèi)容包括計算機圖像學、交互界面設計、增強現(xiàn)實等。
隨著現(xiàn)在人們對這些技術單一或者多樣化的運用,有一部分開發(fā)出的產(chǎn)品或服務也演變出各自的子領域并迅速發(fā)展。根據(jù)行業(yè)特性的不同,我們將人工智能細分成13個子領域,如圖26所示。咨詢公司VentureScanner統(tǒng)計,2016年全球人工智能公司已突破1000家,跨越13個子門類,融資金額高達48億美元。整體來看,AI產(chǎn)業(yè)不論是行業(yè)規(guī)模、還是吸金能力都在飛速擴張中。根據(jù)BankofAmerica預測的數(shù)據(jù):未來五年人工智能的年復合增速36%,預計2020年將達到700億美元。在上述13細分行業(yè)中,研究機器學習(應用)的人工智能公司數(shù)目最多,達260家,約占整個行業(yè)的30%。
橫向比較:機器學習、圖像識別、智能機器人最具發(fā)展?jié)摿?/strong>
我們從未來發(fā)展空間、產(chǎn)業(yè)投資回報率、產(chǎn)業(yè)成熟度、應用場景拓展廣度等幾個方面來橫向比較人工智能的各個細分領域的發(fā)展前景。
從未來市場空間和行業(yè)增速來看,發(fā)展速度最快、市場空間最大的三個領域是機器學習、圖像識別和智能機器人。根據(jù)咨詢公司Tractica的預測,機器學習領域從2015年1.09億美元的市場規(guī)模,將以年復合增長率超過60%的速度飛速發(fā)展,預計2024年將突破100億美元。目前已經(jīng)擁有龐大市場容量的圖像識別同樣不可小覷。2014年圖像識別領域市場規(guī)模已達57億美元,在接下來的五年內(nèi)將以42%的年復合增長率繼續(xù)擴張,預計2019年可達333億美元。此外,智能機器人領域也將隨著應用場景的不斷擴展迎來一輪高速增長Markets And Markets的機器人市場研究數(shù)據(jù)顯示:機器人行業(yè)的總市值將以每年20%的增速增長,并于2020年達到約80億美元,若將硬件與軟件細分開來,軟件部分的增速高達30%。
從投資回報率和產(chǎn)業(yè)成熟度來看,機器學習、圖像識別、智能機器人仍然是最受產(chǎn)業(yè)資本青睞的三個細分領域。眾所周知,風投公司傾向于將資金流向投資回報率最高的新興產(chǎn)業(yè),對比人工智能領域的風險融資額度能夠很好地反映該領域的投資回報率。Venture Scanner公司的調(diào)查數(shù)據(jù)顯示:無論從總體融資額度還是企業(yè)平均融資額度,機器學習都牢牢占據(jù)榜首;圖像識別領域的總體融資額度和企業(yè)平均融資額度緊隨其后;而智能機器人領域由于公司數(shù)量較少,在融資總量上稍有落后,但其企業(yè)平均融資額度高達1400萬美元,僅次于機器學習和圖像識別領域。此外,從各領域公司創(chuàng)辦時間而言,機器學習、圖像識別以及智能機器人也是最為“年輕”的三個領域之一,產(chǎn)業(yè)內(nèi)技術成熟度還不夠高,未來幾年將提供廣闊的藍海市場。
應用場景擴展方面,機器學習、圖像識別、自然語言識別和智能機器人是應用范圍較為廣泛的幾個領域。機器學習技術當前已廣泛應用于廣告、媒體、消費業(yè)等,并且需求不斷增加,未來還將快速滲入醫(yī)療、制造、金融、教育業(yè),對眾多傳統(tǒng)行業(yè)形成巨大沖擊。圖像識別技術目前的應用領域很廣并且需求非常大,具體包括安防監(jiān)控系統(tǒng)、無人駕駛、商品消費、工業(yè)制造、醫(yī)藥、體育和娛樂業(yè)等等,并且在未來幾年將大規(guī)模應用于智能機器人的開發(fā)中。自然語言識別未來可廣泛應用于穿戴設備、智能家居、智能汽車等領域,此外在很多安全保密系統(tǒng)中,語音識別技術也發(fā)揮著重要的作用。但是,該技術目前在不同口音的處理、背景噪音、區(qū)分同音異形異義詞方面仍然存在一些難以解決的困難。而隨著智能機器人功能的逐漸完善,未來在農(nóng)業(yè)、工業(yè)以及醫(yī)療、消費等服務行業(yè)都能代替人工完成多項任務,既能節(jié)省大量人力成本又能提高工作效率和質(zhì)量。
綜合以上分析,我們認為機器學習、圖像識別和智能機器人是目前整個人工智能產(chǎn)業(yè)鏈中發(fā)展前景最好的三大領域。
Who:誰能脫穎而出?技術壁壘、跑對賽道、優(yōu)先布局
人工智能是跨學科、跨行業(yè)的綜合性學科,以大數(shù)據(jù)為基礎、以核心技術為驅(qū)動,應用領域極其廣闊,想象空間極大。在這樣一個復雜度、精細度極高的產(chǎn)業(yè)內(nèi),什么樣的企業(yè)能夠脫穎而出呢?我們認為具備技術壁壘、跑對賽道、優(yōu)先布局特征的企業(yè)最具發(fā)展前景。具體來看:
技術壁壘:巨頭企業(yè)通過并購初創(chuàng)技術企業(yè)形成技術優(yōu)勢
國際互聯(lián)網(wǎng)巨頭爭相收購人工智能技術開發(fā)公司搶奪核心技術。技術是人工智能產(chǎn)業(yè)發(fā)展的必備要素,因此在加強自身研發(fā)投入的同時,各個互聯(lián)網(wǎng)巨頭公司紛紛收購有技術優(yōu)勢的初創(chuàng)型企業(yè)來快速獲得技術、形成壁壘。在過去的幾年里,超過20家專注于開發(fā)人工智能技術的企業(yè)被蜂擁而至的大型互聯(lián)網(wǎng)公司收購,谷歌、亞馬遜、蘋果、IBM、雅虎、Facebook、Intel等互聯(lián)網(wǎng)行業(yè)巨頭收購動作最為頻繁。
谷歌作為人工智能領域的領頭羊進行了5次至關重要的收購,涉及深度學習、推薦引擎、圖片搜索等多個技術領域,值得一提的是,近期戰(zhàn)勝韓國棋手李世石的AlphaGo是2014年谷歌花費4億美元收購的英國初創(chuàng)公司DeepMind所創(chuàng)造的。而據(jù)彭博社報道,亞馬遜于2015年秋季秘密收購了硅谷初創(chuàng)公司Orbeus,該團隊專注于人臉識別技術,其核心產(chǎn)品ReKognition能夠自動分類和辨別照片中的內(nèi)容,目前的識別對象可以包括人臉、場景、陸標、物體等其他概念。Orbeus的照片軟件PhotoTime不僅早于谷歌發(fā)行的基于人工智能的應用,其使用的圖像識別算法也比Facebook先前收購的Face.com更加細致。
國際互聯(lián)網(wǎng)巨頭收購人工智能公司主要案例
跑對賽道:選擇重點領域進行突破,所選領域未來有爆發(fā)點
人工智能產(chǎn)業(yè)目前尚處于成長初期,應用領域非常廣且又是技術密集型產(chǎn)業(yè),任何一個領域的發(fā)展都需要投入大量的科學資金、科技人才和物力等等。即便是資金技術雄厚的巨頭企業(yè)也很難在人工智能產(chǎn)業(yè)鏈全部領域全面開花,這個時候很多公司往往會選擇一個或者幾個重點領域進行重點布局,因此,公司戰(zhàn)略所選的領域未來是否具有爆發(fā)潛力就至關重要,也就是我們所說的“跑對賽道,脫穎而出”。
基于我們從產(chǎn)業(yè)資本投資方向,行業(yè)屬性及發(fā)展路徑等幾個維度的比較分析,我們認為重點布局在機器學習、圖像識別、智能機器人三大領域的公司最可能脫穎而出。
機器學習主要指的是人工智能領域應用中比較熱門的深度學習,通過多層次的學習而得到對于原始數(shù)據(jù)的不同抽象層度的表示,進而提高分類和預測等任務的準確性。深度學習可以應用于包括圖像識別、自然語言處理、廣告點擊率預估乃至人工智能平臺(如谷歌大腦)等在內(nèi)的多個產(chǎn)品,并大幅度地提升這些產(chǎn)品的性能,各大研究機構(gòu)和公司都投入了大量的資源進行相關的研究和開發(fā)。
縱觀國際,谷歌可謂跑對機器學習領域賽道的最佳典范。谷歌在機器學習領域的投入和研發(fā)水平遠超其他對手,更是在被稱為機器學習年的2015年取得了這個領域多項突破性的進展。
谷歌2015年機器學習研究大事件
放眼國內(nèi),百度是目前國內(nèi)唯一一家有望在機器學習領域與谷歌相媲美的公司。百度2013年率先決定成立深度學習研究院,主要進行深度學習&機器學習、機器人、人機交互、圖片識別等方面的研究。此后,百度繼續(xù)加大在機器學習領域的研發(fā)投入,2014年5月在美國硅谷投資3億美元成立百度美國研發(fā)中心,宣布任命人工智能泰斗,原GoogleBrain項目負責人吳恩達為百度公司的首席科學家,全面負責百度研究院。2014年,百度發(fā)布大數(shù)據(jù)計劃,擬運用機器學習完成“開放云-數(shù)據(jù)工廠-百度大腦”的三層設計。
圖像識別是指計算機從圖像中識別出物體、場景和活動的能力。傳統(tǒng)的圖像識別技術只能簡單識別或查找靜態(tài)圖像,對視頻分析、動態(tài)識別等則是有待于開發(fā)的潛力市場。不僅如此,圖像識別還可以應用到特別廣泛的社會領域,比如智能安保和互聯(lián)網(wǎng)金融、社會福利保障、電子商務等領域。因此,在圖像識別領域跨越的一個小小步伐,就有可能帶來可觀的收益。
舉例來說,一家初創(chuàng)公司Dextro正在開發(fā)能夠進行視頻識別的軟件并憑借這個產(chǎn)品,成功進入了2015年在線視頻企業(yè)Top15。Dextro主要運用深度學習算法進行視頻分析,它們正在開發(fā)的平臺SSM(Sight,Sound&Motion)可以幫助用戶尋找最有新聞價值的視頻。Dextro目前提供兩種服務,一種是在線視頻搜索,即像文字搜索一樣尋找、解釋和分類視頻,可以用于提升視頻編輯剪輯工作效率和實現(xiàn)視頻與廣告的智能匹配;另一種是監(jiān)控視頻管理,能夠快速鎖定監(jiān)控視頻中的圖像,可以用于家庭智能安保、城市空間布局分析和犯罪分子識別等領域。
根據(jù)國際機器人聯(lián)盟(IFR)按應用領域的劃分,可以將智能機器人分為工業(yè)機器人和服務機器人兩大類,并且廣泛應用于生產(chǎn)組裝、維護保養(yǎng)、修理、醫(yī)療、清洗、保安、救援、監(jiān)護等領域。隨著智能機器人能實現(xiàn)的功能越來越多,提供的服務越來越精細化,刺激著智能機器人規(guī)模的快速增長。生活中,人們厭煩了從事類似于清潔、看護、保安等重復性工作,這種簡單勞動力的不足使服務機器人有著巨大的市場,因此家庭清潔機器人、殘障看護機器人、住宅安全和監(jiān)視機器人應運而生;而隨著人們生活水平的提高和全球人口老齡化的到來,能夠提供教育、醫(yī)療、娛樂等專業(yè)化服務的智能機器人也開始倍受人們追捧。受到這些剛性需求的驅(qū)動,公司涉足智能機器人領域就等同搭上規(guī)模擴張的“快速列車”。
美國直覺外科公司正是憑借其王牌產(chǎn)品達芬奇機器人在10年間一舉擴張成為全球最優(yōu)秀的醫(yī)用機器人公司。達芬奇機器人目前世界上最成功的手術機器人系統(tǒng),它是為外科醫(yī)生手術操作中提供直觀的控制運動、精細組織操作和三維高清晰度視覺能力而設計的,同時允許外科醫(yī)生進行微創(chuàng)手術。達芬奇機器人由三部分組成:外科醫(yī)生控制臺、床邊機械臂系統(tǒng)、成像系統(tǒng)。實施手術時主刀醫(yī)師不與病人直接接觸,通過三維視覺系統(tǒng)和動作定標系統(tǒng)操作控制,由機械臂以及手術器械模擬完成醫(yī)生的技術動作和手術操作。目前美國FDA已經(jīng)批準將達芬奇機器人手術系統(tǒng)用于成人和兒童的普通外科、胸外科、泌尿外科、婦產(chǎn)科、頭頸外科以及心臟手術。得益于世界市場對醫(yī)用機器人的持續(xù)認可和需求增長,直覺外科公司在過去的10年里規(guī)模快速擴張,營業(yè)收入復合增長率達30%,達芬奇機器人使用范圍復合增長16%,使用頻率達52.3萬次。
領先布局:國外將技術開發(fā)拓展到商業(yè)領域,國內(nèi)將場景設計進行商業(yè)落地
隨著AI技術的發(fā)展,AI技術幾乎可以應用到現(xiàn)代商業(yè)的各個領域。由于AI涉及到許多復雜的技術,通過長時間的積累和學習還可以進行自我改進,原有的客戶使用情況還能提供源源不絕的數(shù)據(jù)供進一步改進參考。因此,在人工智能領域的商業(yè)化盡早進行布局,占據(jù)市場、積累客戶資源獲得足夠多的基礎數(shù)據(jù)就至關重要。我們發(fā)現(xiàn),國內(nèi)外公司都在商業(yè)化應用領域積極地進行探索,國外的商業(yè)化以技術為核心,通過優(yōu)化算法推廣到實際應用;國內(nèi)的商業(yè)化更側(cè)重場景設計,注重個人體驗,相對來說,核心技術優(yōu)勢的進步并不那么明顯。具體如下:
海外AI商業(yè)化應用:將技術開發(fā)拓展到商業(yè)領域,擁有核心技術的互聯(lián)網(wǎng)巨頭和創(chuàng)業(yè)企業(yè)最容易脫穎而出。海外AI的商業(yè)化注重技術開發(fā),基于大數(shù)據(jù)基礎、算法優(yōu)化來提高技術水平進而再把技術開發(fā)拓展到商業(yè)化領域:以技術為核心,商業(yè)化則是再進一步的必然結(jié)果,一般來說商業(yè)化的項目都是其在技術技術領域已經(jīng)達到足夠多的積累之后才發(fā)生的。具體來看:1)Facebook,圍繞大數(shù)據(jù)挖掘的技術核心,建造能夠理解海量數(shù)據(jù)的人工智能機器,通過挖掘用戶數(shù)據(jù)信息為用戶推薦其更為喜歡的瀏覽內(nèi)容;2)蘋果,基于語音識別的核心技術,開發(fā)人工智能語音系統(tǒng)Siri,用戶通過語音對話對蘋果下指令;3)Uniqul,基于人臉識別技術,最早推出了人臉識別支付技術,推進AI與金融相結(jié)合的商業(yè)模式發(fā)展;4)Bettermen,建立個人投資管理平臺,只要在Betterment平臺上,回答幾個關于你的投資目標的問題,Betterment會根據(jù)你的回答做分析給出相應的投資組合建議,并通過平臺直接投資。
國內(nèi)AI商業(yè)化應用:優(yōu)化場景設計進行商業(yè)化布局。與海外國家相比,國內(nèi)的AI核心技術優(yōu)勢并不那么明顯,相應的在商業(yè)化應用領域也并非注重核心技術的提供而是投入于優(yōu)化商業(yè)場景,加強用戶體驗。有人力、財力基礎的三大國內(nèi)巨頭互聯(lián)網(wǎng)公司最具商業(yè)場景落地優(yōu)勢。具體來看:1)百度,百度將語音技術、圖片識別技術、O2O服務進行場景落地,用戶通過百度輸入一段語音,百度通過語音技術將其準確的翻譯為文字,再通過自然語言理解技術對該需求進行理解,最后給出用戶想要的電影票預訂、酒店預訂、景點門票預訂等服務;2)阿里巴巴,成立DST部門專門進行大數(shù)據(jù)挖掘,通過用戶產(chǎn)生的大數(shù)據(jù)進而為其推薦更多其有潛在購買欲望的產(chǎn)品;3)騰訊,旗下的QQ、微信有著巨大的用戶流量,向客戶精準投放廣告并開放“人臉識別”API。
投資策略:聚焦高前景細分領域技術突破者和商業(yè)化應用先行者
技術騰飛與應用拓展帶來人工智能第三波浪潮。目前人工智能的技術領域的發(fā)展還在起飛期,企業(yè)通過選擇重點領域進行突破,機器學習、圖像識別和智能機器人三大領域?qū)⒂型麕砑夹g騰飛;而近幾年來國際互聯(lián)網(wǎng)巨頭爭相收購初創(chuàng)技術企業(yè),加速人工智能布局,逐漸形成技術優(yōu)勢;技術層的進步人工智能進入發(fā)展的上升通道,應用層投資機會和投入回報率也隨之高企。
揚帆人工智能未知藍海,掘金細分領域投資機會。我們基于發(fā)展?jié)摿?、市場空間、應用范圍三個方面的考慮,重點推薦兩條投資主線:
主線一,聚焦發(fā)展技術優(yōu)勢,通過并購重組在短時間內(nèi)形成技術壁壘優(yōu)勢,或者集中投入于具備前景的細分技術領域的企業(yè)。一方面我們看好通過投資或收購人工智能領域開發(fā)公司,快速地獲得技術優(yōu)勢、進而領先布局人工智能領域的龍頭企業(yè);另一方面,針對發(fā)展前景廣闊的機器學習、圖像識別和智能機器人三個最具發(fā)展領域,投入大量研發(fā)資金推動技術創(chuàng)新、搶先形成技術壁壘的公司具備投資價值。
主線二,優(yōu)先布局商業(yè)化應用,利用技術拓展和場景優(yōu)化進行人工智能商業(yè)化落地的公司能快速享受成長。“人工智能+”將引領產(chǎn)業(yè)變革,不斷引入新的業(yè)態(tài)和商業(yè)模式。目前主要落地場景包括金融、教育、家居、安保、娛樂等傳統(tǒng)行業(yè),同時人工智能在無人駕駛汽車、VR、無人機等新興產(chǎn)業(yè)的發(fā)展也同樣值得期待。
聯(lián)系客服