九色国产,午夜在线视频,新黄色网址,九九色综合,天天做夜夜做久久做狠狠,天天躁夜夜躁狠狠躁2021a,久久不卡一区二区三区

打開(kāi)APP
userphoto
未登錄

開(kāi)通VIP,暢享免費(fèi)電子書(shū)等14項(xiàng)超值服

開(kāi)通VIP
OpenCV下車(chē)牌定位算法實(shí)現(xiàn)代碼(一)
車(chē)牌定位算法在車(chē)牌識(shí)別技術(shù)中占有很重要地位,一個(gè)車(chē)牌識(shí)別系統(tǒng)的識(shí)別率往往取決于車(chē)牌定位的成功率及準(zhǔn)確度。

      車(chē)牌定位有很多種算法,從最簡(jiǎn)單的來(lái),車(chē)牌在圖像中一般被認(rèn)為是長(zhǎng)方形,由于圖像攝取角度不同也可能是四邊形。我們可以使用OpenCV中的實(shí)例: C:\Program Files\OpenCV\samples\c.squares.c 這是一個(gè)搜索圖片中矩形的一個(gè)算法。我們只要稍微修改一下就可以實(shí)現(xiàn)定位車(chē)牌。

      在這個(gè)實(shí)例中使用了canny算法進(jìn)行邊緣檢測(cè),然后二值化,接著用cvFindContours搜索輪廓,最后從找到的輪廓中根據(jù)角點(diǎn)的個(gè)數(shù),角的度數(shù)和輪廓大小確定,矩形位置。以下是效果圖:

這個(gè)算法可以找到一些車(chē)牌位置,但在復(fù)雜噪聲背景下,或者車(chē)牌圖像灰度與背景相差不大就很難定位車(chē)牌

所以我們需要尋找更好的定位算法。下面是squares的代碼:

#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
#endif

int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
CvPoint pt[4];
const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
    double dx1 = pt1->x - pt0->x;
    double dy1 = pt1->y - pt0->y;
    double dx2 = pt2->x - pt0->x;
    double dy2 = pt2->y - pt0->y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
    CvSeq* contours;
    int i, c, l, N = 11;
    CvSize sz = cvSize( img->width & -2, img->height & -2 );
    IplImage* timg = cvCloneImage( img ); // make a copy of input image
    IplImage* gray = cvCreateImage( sz, 8, 1 );
    IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
    IplImage* tgray;
    CvSeq* result;
    double s, t;
    // create empty sequence that will contain points -
    // 4 points per square (the square's vertices)
    CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
   
    // select the maximum ROI in the image
    // with the width and height divisible by 2
    cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
   
    // down-scale and upscale the image to filter out the noise
    cvPyrDown( timg, pyr, 7 );
    cvPyrUp( pyr, timg, 7 );
    tgray = cvCreateImage( sz, 8, 1 );
   
    // find squares in every color plane of the image
    for( c = 0; c < 3; c++ )
    {
        // extract the c-th color plane
        cvSetImageCOI( timg, c+1 );
        cvCopy( timg, tgray, 0 );
       
        // try several threshold levels
        for( l = 0; l < N; l++ )
        {
            // hack: use Canny instead of zero threshold level.
            // Canny helps to catch squares with gradient shading  
            if( l == 0 )
            {
                // apply Canny. Take the upper threshold from slider
                // and set the lower to 0 (which forces edges merging)
                cvCanny( tgray, gray,60, 180, 3 );
                // dilate canny output to remove potential
                // holes between edge segments
                cvDilate( gray, gray, 0, 1 );
            }
            else
            {
                // apply threshold if l!=0:
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                //cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
    cvThreshold( tgray, gray, 50, 255, CV_THRESH_BINARY );
            }
           
            // find contours and store them all as a list
            cvFindContours( gray, storage, &contours, sizeof(CvContour),
                CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
           
            // test each contour
            while( contours )
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                result = cvApproxPoly( contours, sizeof(CvContour), storage,
                    CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
                // square contours should have 4 vertices after approximation
                // relatively large area (to filter out noisy contours)
                // and be convex.
                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if( result->total == 4 &&
                    fabs(cvContourArea(result,CV_WHOLE_SEQ)) > 1000 &&
                    cvCheckContourConvexity(result) )
                {
                    s = 0;
                   
                    for( i = 0; i < 5; i++ )
                    {
                        // find minimum angle between joint
                        // edges (maximum of cosine)
                        if( i >= 2 )
                        {
                            t = fabs(angle(
                            (CvPoint*)cvGetSeqElem( result, i ),
                            (CvPoint*)cvGetSeqElem( result, i-2 ),
                            (CvPoint*)cvGetSeqElem( result, i-1 )));
                            s = s > t ? s : t;
                        }
                    }
                   
                    // if cosines of all angles are small
                    // (all angles are ~90 degree) then write quandrange
                    // vertices to resultant sequence
                    if( s < 0.3 )
                        for( i = 0; i < 4; i++ )
                            cvSeqPush( squares,
                                (CvPoint*)cvGetSeqElem( result, i ));
                }
               
                // take the next contour
                contours = contours->h_next;
            }
        }
    }
   
    // release all the temporary images
    cvReleaseImage( &gray );
    cvReleaseImage( &pyr );
    cvReleaseImage( &tgray );
    cvReleaseImage( &timg );
   
    return squares;
}


// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
    CvSeqReader reader;
    IplImage* cpy = cvCloneImage( img );
    int i;
   
    // initialize reader of the sequence
    cvStartReadSeq( squares, &reader, 0 );
   
    // read 4 sequence elements at a time (all vertices of a square)
    for( i = 0; i < squares->total; i += 4 )
    {
        CvPoint* rect = pt;
        int count = 4;
       
        // read 4 vertices
        memcpy( pt, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 1, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 2, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 3, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
       
        // draw the square as a closed polyline
        cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
    }
   
    // show the resultant image
    cvShowImage( wndname, cpy );
    cvReleaseImage( &cpy );
}


void on_trackbar( int a )
{
    if( img )
        drawSquares( img, findSquares4( img, storage ) );
}

char* names[] = { "pic1.png", "pic2.png", "pic3.png",
                  "pic4.png", "pic5.png", "pic6.png", 0 };

int main(int argc, char** argv)
{
    int i, c;
    // create memory storage that will contain all the dynamic data
    storage = cvCreateMemStorage(0);

    for( i = 0; names[i] != 0; i++ )
    {
        // load i-th image
        img0 = cvLoadImage( names[i], 1 );
        if( !img0 )
        {
            printf("Couldn't load %s\n", names[i] );
            continue;
        }
        img = cvCloneImage( img0 );
       
        // create window and a trackbar (slider) with parent "image" and set callback
        // (the slider regulates upper threshold, passed to Canny edge detector)
        cvNamedWindow( wndname,0 );
        cvCreateTrackbar( "canny thresh", wndname, &thresh, 1000, on_trackbar );
       
        // force the image processing
        on_trackbar(0);
        // wait for key.
        // Also the function cvWaitKey takes care of event processing
        c = cvWaitKey(0);
        // release both images
        cvReleaseImage( &img );
        cvReleaseImage( &img0 );
        // clear memory storage - reset free space position
        cvClearMemStorage( storage );
        if( c == 27 )
            break;
    }
   
    cvDestroyWindow( wndname );
   
    return 0;
}

#ifdef _EiC
main(1,"squares.c");
#endif

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶(hù)發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開(kāi)APP,閱讀全文并永久保存 查看更多類(lèi)似文章
猜你喜歡
類(lèi)似文章
opencv 車(chē)牌定位及分割
[轉(zhuǎn)載]opencv識(shí)別正方形(矩形)代碼
opencv查找輪廓
OPENCV 回調(diào)函數(shù)的使用
OpenCV函數(shù)cvFindContours
《學(xué)習(xí)openCV》例程解析 ex_8_2 (輪廓)
更多類(lèi)似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服