關(guān)于邊緣檢測(cè)的基礎(chǔ)來(lái)自于一個(gè)事實(shí),即在邊緣部分,像素值出現(xiàn)”跳躍“或者較大的變化。如果在此邊緣部分求取一階導(dǎo)數(shù),就會(huì)看到極值的出現(xiàn)。
而在一階導(dǎo)數(shù)為極值的地方,二階導(dǎo)數(shù)為0,基于這個(gè)原理,就可以進(jìn)行邊緣檢測(cè)。
關(guān)于 Laplace 算法原理,可參考
下面的代碼展示了分別對(duì)灰度化的圖像和原始彩色圖像中的邊緣進(jìn)行檢測(cè):
- import cv2.cv as cv
-
- im=cv.LoadImage('img/building.png', cv.CV_LOAD_IMAGE_COLOR)
-
- # Laplace on a gray scale picture
- gray = cv.CreateImage(cv.GetSize(im), 8, 1)
- cv.CvtColor(im, gray, cv.CV_BGR2GRAY)
-
- aperture=3
-
- dst = cv.CreateImage(cv.GetSize(gray), cv.IPL_DEPTH_32F, 1)
- cv.Laplace(gray, dst,aperture)
-
- cv.Convert(dst,gray)
-
- thresholded = cv.CloneImage(im)
- cv.Threshold(im, thresholded, 50, 255, cv.CV_THRESH_BINARY_INV)
-
- cv.ShowImage('Laplaced grayscale',gray)
- #------------------------------------
-
- # Laplace on color
- planes = [cv.CreateImage(cv.GetSize(im), 8, 1) for i in range(3)]
- laplace = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
- colorlaplace = cv.CreateImage(cv.GetSize(im), 8, 3)
-
- cv.Split(im, planes[0], planes[1], planes[2], None) #Split channels to apply laplace on each
- for plane in planes:
- cv.Laplace(plane, laplace, 3)
- cv.ConvertScaleAbs(laplace, plane, 1, 0)
-
- cv.Merge(planes[0], planes[1], planes[2], None, colorlaplace)
-
- cv.ShowImage('Laplace Color', colorlaplace)
- #-------------------------------------
-
- cv.WaitKey(0)
效果展示
原圖
灰度化圖片檢測(cè)
原始彩色圖片檢測(cè)
Sobel 也是很常用的一種輪廓識(shí)別的算法。
關(guān)于 Sobel 導(dǎo)數(shù)原理的介紹,可參考
以下是使用 Sobel 算法進(jìn)行輪廓檢測(cè)的代碼和效果
- import cv2.cv as cv
-
- im=cv.LoadImage('img/building.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
-
- sobx = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
- cv.Sobel(im, sobx, 1, 0, 3) #Sobel with x-order=1
-
- soby = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
- cv.Sobel(im, soby, 0, 1, 3) #Sobel withy-oder=1
-
- cv.Abs(sobx, sobx)
- cv.Abs(soby, soby)
-
- result = cv.CloneImage(im)
- cv.Add(sobx, soby, result) #Add the two results together.
-
- cv.Threshold(result, result, 100, 255, cv.CV_THRESH_BINARY_INV)
-
- cv.ShowImage('Image', im)
- cv.ShowImage('Result', result)
-
- cv.WaitKey(0)
處理之后效果圖(感覺(jué)比Laplace效果要好些)
cv.MorphologyEx 是另外一種邊緣檢測(cè)的算法
- import cv2.cv as cv
-
- image=cv.LoadImage('img/build.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
-
- #Get edges
- morphed = cv.CloneImage(image)
- cv.MorphologyEx(image, morphed, None, None, cv.CV_MOP_GRADIENT) # Apply a dilate - Erode
-
- cv.Threshold(morphed, morphed, 30, 255, cv.CV_THRESH_BINARY_INV)
-
- cv.ShowImage('Image', image)
- cv.ShowImage('Morphed', morphed)
-
- cv.WaitKey(0)
Canny 算法可以對(duì)直線邊界做出很好的檢測(cè);
關(guān)于 Canny 算法原理的描述,可參考:
- import cv2.cv as cv
- import math
-
- im=cv.LoadImage('img/road.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
-
- pi = math.pi #Pi value
-
- dst = cv.CreateImage(cv.GetSize(im), 8, 1)
-
- cv.Canny(im, dst, 200, 200)
- cv.Threshold(dst, dst, 100, 255, cv.CV_THRESH_BINARY)
-
- #---- Standard ----
- color_dst_standard = cv.CreateImage(cv.GetSize(im), 8, 3)
- cv.CvtColor(im, color_dst_standard, cv.CV_GRAY2BGR)#Create output image in RGB to put red lines
-
- lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_STANDARD, 1, pi / 180, 100, 0, 0)
- for (rho, theta) in lines[:100]:
- a = math.cos(theta) #Calculate orientation in order to print them
- b = math.sin(theta)
- x0 = a * rho
- y0 = b * rho
- pt1 = (cv.Round(x0 1000*(-b)), cv.Round(y0 1000*(a)))
- pt2 = (cv.Round(x0 - 1000*(-b)), cv.Round(y0 - 1000*(a)))
- cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4) #Draw the line
-
- #---- Probabilistic ----
- color_dst_proba = cv.CreateImage(cv.GetSize(im), 8, 3)
- cv.CvtColor(im, color_dst_proba, cv.CV_GRAY2BGR) # idem
-
- rho=1
- theta=pi/180
- thresh = 50
- minLength= 120 # Values can be changed approximately to fit your image edges
- maxGap= 20
-
- lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_PROBABILISTIC, rho, theta, thresh, minLength, maxGap)
- for line in lines:
- cv.Line(color_dst_proba, line[0], line[1], cv.CV_RGB(255, 0, 0), 2, 8)
-
- cv.ShowImage('Image',im)
- cv.ShowImage('Cannied', dst)
- cv.ShowImage('Hough Standard', color_dst_standard)
- cv.ShowImage('Hough Probabilistic', color_dst_proba)
- cv.WaitKey(0)
原圖
使用 Canny 算法處理之后
標(biāo)記出標(biāo)準(zhǔn)的直線
標(biāo)記出所有可能的直線
OpenCV 提供一個(gè) FindContours 函數(shù)可以用來(lái)檢測(cè)出圖像中對(duì)象的輪廓:
- import cv2.cv as cv
-
- orig = cv.LoadImage('img/build.png', cv.CV_LOAD_IMAGE_COLOR)
- im = cv.CreateImage(cv.GetSize(orig), 8, 1)
- cv.CvtColor(orig, im, cv.CV_BGR2GRAY)
- #Keep the original in colour to draw contours in the end
-
- cv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY)
- cv.ShowImage('Threshold 1', im)
-
- element = cv.CreateStructuringElementEx(5*2 1, 5*2 1, 5, 5, cv.CV_SHAPE_RECT)
-
- cv.MorphologyEx(im, im, None, element, cv.CV_MOP_OPEN) #Open and close to make appear contours
- cv.MorphologyEx(im, im, None, element, cv.CV_MOP_CLOSE)
- cv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY_INV)
- cv.ShowImage('After MorphologyEx', im)
- # --------------------------------
-
- vals = cv.CloneImage(im) #Make a clone because FindContours can modify the image
- contours=cv.FindContours(vals, cv.CreateMemStorage(0), cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))
-
- _red = (0, 0, 255); #Red for external contours
- _green = (0, 255, 0);# Gren internal contours
- levels=2 #1 contours drawn, 2 internal contours as well, 3 ...
- cv.DrawContours (orig, contours, _red, _green, levels, 2, cv.CV_FILLED) #Draw contours on the colour image
-
- cv.ShowImage('Image', orig)
- cv.WaitKey(0)
效果圖:
原圖
識(shí)別結(jié)果
- import cv2.cv as cv
-
- im = cv.LoadImage('img/build.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
-
- dst_32f = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_32F, 1)
-
- neighbourhood = 3
- aperture = 3
- k = 0.01
- maxStrength = 0.0
- threshold = 0.01
- nonMaxSize = 3
-
- cv.CornerHarris(im, dst_32f, neighbourhood, aperture, k)
-
- minv, maxv, minl, maxl = cv.MinMaxLoc(dst_32f)
-
- dilated = cv.CloneImage(dst_32f)
- cv.Dilate(dst_32f, dilated) # By this way we are sure that pixel with local max value will not be changed, and all the others will
-
- localMax = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
- cv.Cmp(dst_32f, dilated, localMax, cv.CV_CMP_EQ) #compare allow to keep only non modified pixel which are local maximum values which are corners.
-
- threshold = 0.01 * maxv
- cv.Threshold(dst_32f, dst_32f, threshold, 255, cv.CV_THRESH_BINARY)
-
- cornerMap = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
- cv.Convert(dst_32f, cornerMap) #Convert to make the and
- cv.And(cornerMap, localMax, cornerMap) #Delete all modified pixels
-
- radius = 3
- thickness = 2
-
- l = []
- for x in range(cornerMap.height): #Create the list of point take all pixel that are not 0 (so not black)
- for y in range(cornerMap.width):
- if cornerMap[x,y]:
- l.append((y,x))
-
- for center in l:
- cv.Circle(im, center, radius, (255,255,255), thickness)
-
-
- cv.ShowImage('Image', im)
- cv.ShowImage('CornerHarris Result', dst_32f)
- cv.ShowImage('Unique Points after Dilatation/CMP/And', cornerMap)
-
- cv.WaitKey(0)
聯(lián)系客服